On the Convergence of the Ohta-Kawasaki Equation to Motion by Nonlocal Mullins-Sekerka Law

نویسنده

  • Nam Q. Le
چکیده

In this paper, we establish the convergence of the Ohta–Kawasaki equation to motion by nonlocal Mullins–Sekerka law on any smooth domain in space dimensions N ≤ 3. These equations arise in modeling microphase separation in diblock copolymers. The only assumptions that guarantee our convergence result are (i) well-preparedness of the initial data and (ii) smoothness of the limiting interface. Our method makes use of the “Gamma-convergence” of a gradient flows scheme initiated by Sandier and Serfaty and the constancy of multiplicity of the limiting interface due to its smoothness. For the case of radially symmetric initial data without well-preparedness, we give a new and short proof of the result of M. Henry for all space dimensions. Finally, we establish transport estimates for solutions of the Ohta–Kawasaki equation characterizing their transport mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One - sided Mullins - Sekerka Flow Does Not Preserve Convexity ∗ Uwe

The Mullins-Sekerka model is a nonlocal evolution model for hypersurfaces, which arises as a singular limit for the Cahn-Hilliard equation. Assuming the existence of sufficiently smooth solutions we will show that the one-sided Mullins-Sekerka flow does not preserve convexity. Introduction The Mullins-Sekerka flow is a nonlocal generalization of the mean curvature flow arising from physics [10,...

متن کامل

A Gamma-convergence approach to the Cahn–Hilliard equation

We study the asymptotic dynamics of the Cahn–Hilliard equation via the “Gamma-convergence” of gradient flows scheme initiated by Sandier and Serfaty. This gives rise to an H1-version of a conjecture by De Giorgi, namely, the slope of the Allen–Cahn functional with respect to the H−1-structure Gamma-converges to a homogeneous Sobolev norm of the scalar mean curvature of the limiting interface. W...

متن کامل

Two-sided Mullins-Sekerka flow

The (two-sided) Mullins-Sekerka model is a nonlocal evolution model for closed hypersurfaces, which was originally proposed as a model for phase transitions of materials of negligible specific heat. Under this evolution the propagating interfaces maintain the enclosed volume while the area of the interfaces decreases. We will show by means of an example that the Mullins-Sekerka flow does not pr...

متن کامل

Thermodynamically driven incompressible fluid mixtures

We compare two models describing the dynamics of phase separation of incompressible mixtures: A local model proposed by de Gennes, and a nonlocal model proposed by E and Palffy-Muhoray. We find that in the interfacial regime, the local model gives rise to interfacial motion via the Mullins-Sekerka law for moderate quenches, and surface diffusion for deep quenches. The interface dynamics is slow...

متن کامل

Thermodynamically driven incompressible uid mixtures

We compare two models describing the dynamics of phase separation of incompressible mixtures: A local model proposed by de Gennes, and a nonlocal model proposed by E and Pally-Muhoray. We nd that in the interfacial regime, the local model gives rise to interfacial motion via the Mullins-Sekerka law for moderate quenches, and surface diiusion for deep quenches. The interface dynamics is slowed d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 42  شماره 

صفحات  -

تاریخ انتشار 2010